
getdns API Review 22-Jan-2014

Page 1 of 9

getdns API Design Review
Bob Steagall

VERISIGN
22-Jan-2014

getdns API Review 22-Jan-2014

 Page 2 of 9

1 Overview
This document provides a preliminary design review of the getdns API, version 0.320, as published on
the VPNC website at http://www.vpnc.org/getdns-api. It does not evaluate or comment on the underlying
object model implied by the API, nor does it address how well that model would fulfill its intended
purpose. Instead, the review focusses purely upon the “mechanics” of the interface, looking for possible
problem areas and opportunities for improvement.

2 API Refinement
This section is primarily an effort to identify areas where problems may exist, and suggest ways to address
those problems. The underlying assumption is that the API is almost fully baked, and large changes, such
as those that would result from a major refactoring, are not feasible.

2.1 Function Return Types and Integer Parameters

I am puzzled by the use of unit16_t (typedef’d as getdns_return_t) as the return type for all
functions in the API, the use of uint16_t as the parameter type chosen to convey the many constants
defined by the API (as macros), and the use of uint16_t and uint8_t as the types of certain numerical
parameters. I'm not sure I see a benefit in using narrower integer types for these purposes, while I can see
some disadvantages:

 There is a greater chance of generating annoying compiler warnings when using these narrow
types for comparisons and assignments in code outside the API.

 Casting parameters to uint16_t or uint8_t from wider integer types increases the chances of
accidental value truncation errors. It appears that the intent is to use narrower types in order to
constrain parameters to a smaller range of “always-correct” values and avoid validation. I don't
believe there is any efficiency to be gained, and in the worst case, this could be a source of
difficult-to-find errors.

 The effectiveness of symbolic debuggers is reduced a little when examining return values and
parameters corresponding to API constants. These items will appear as simple integers with
“magic” values.

Instead of using a native integer type to represent return status codes and parameter constants, the API
could define several enumerations with corresponding type aliases, with each enumeration-alias pair
dedicated to a related group of constants. For example:

typedef enum getdns_return_code

{

 GETDNS_RETURN_GOOD = 0,

 GETDNS_RETURN_GENERIC_ERROR = 1,

 GETDNS_RETURN_BAD_DOMAIN_NAME = 300,

 GETDNS_RETURN_BAD_CONTEXT = 301,

 GETDNS_RETURN_CONTEXT_UPDATE_FAIL = 302,

 GETDNS_RETURN_UNKNOWN_TRANSACTION = 303,

 GETDNS_RETURN_NO_SUCH_LIST_ITEM = 304,

 GETDNS_RETURN_NO_SUCH_DICT_NAME = 305,

 GETDNS_RETURN_WRONG_TYPE_REQUESTED = 306,

 GETDNS_RETURN_NO_SUCH_EXTENSION = 307,

 GETDNS_RETURN_EXTENSION_MISFORMAT = 308,

 GETDNS_RETURN_DNSSEC_WITH_STUB_DISALLOWED = 309,

 GETDNS_RETURN_SET_REP_WIDTH_DO_NOT_USE = 0x7FFFFFFF

} getdns_return_t;

http://www.vpnc.org/getdns-api/

getdns API Review 22-Jan-2014

 Page 3 of 9

typedef enum getdns_dnssec_value

{

 GETDNS_DNSSEC_SECURE = 400,

 GETDNS_DNSSEC_BOGUS = 401,

 GETDNS_DNSSEC_INDETERMINATE = 402,

 GETDNS_DNSSEC_INSECURE = 403,

 GETDNS_DNSSEC_NOT_PERFORMED = 404,

 GETDNS_DNSSEC_SET_REP_WIDTH_DO_NOT_USE = 0x7FFFFFFF

} getdns_dnssec_t;

Note that the last value in each enumeration is a dummy that serves to specify the minimum width for all
values of that enumeration. I’ve chosen a value which will lead to enumerated value sizes of 32 bits,
which is a natural word size on many platforms.

Using enumerations instead of native integers and macros provides a few advantages:

 The C language provides no type safety when using enumerations, freely and quietly converting
back and forth from enum to integer types. However, C++ treats enums as distinct types, and so
some type safety is possible when the API header is included in C++ translation units. I believe any
type safety the API can provide is worth having, even if it accrues only to C++ code.

 Using enumerated values can aid debugging when using symbolic debuggers. These days, most
debuggers have the ability to show an enumeration's symbol as well as its value.

 Storage requirements for enumerations as described above is predictable and alignment is natural
(e.g., on Intel HW, being of word size and falling on word boundaries).

2.2 Type Aliases for Opaque Types

The API should provide type aliases for all of its opaque types. This will promote a consistent conceptual
model and improve readability in both client code and the API itself. For example, the struct
getdns_dict and struct getdns_list data structures both appear to be opaque types that will not
provide direct access to their members, and thus there is no reason for client code to work directly with
pointers to these types.

In order to be consistent with getdns_context_t, as well as in the interest of promoting const
correctness when struct getdns_dict and struct getdns_list are defined in the API header, they
could be treated as handle types:

typedef struct getdns_dict const* getdns_dict_t;

typedef struct getdns_list const* getdns_list_t;

From what I can tell, client code will use accessor functions for retrieving data from dict and list
objects, so the const is warranted in this scenario. Internal implementation functions can cast away the
const in order to perform modification and deallocation of dict and list objects, presuming that the
client has respected their const-ness and not directly modified their internal state.

On the other hand, if the API header contains only forward declarations of struct getdns_dict and
struct getdns_list, then the const is unnecessary, and the handles could be defined as:

typedef struct getdns_dict* getdns_dict_t;

typedef struct getdns_list* getdns_list_t;

2.3 Const Correctness

The API as presented in version 0.320 does not really provide const correctness, an important safety
mechanism that C and C++ code should implement wherever possible. In particular:

getdns API Review 22-Jan-2014

 Page 4 of 9

 an input parameter that is a pointer should be a pointer-to-const if the argument is not changed
by the function; and,

 an output parameter that is a pointer should be a pointer-to-pointer-to-const if the client cannot
change the pointed-to return value.

For example, in the getdns_dict_get_* and getdns_dict_set_* sets of helper functions, the
second parameter in each function could be changed to char const*:

getdns_return_t getdns_dict_get_int

(

 getdns_dict_t this_dict,

 char const* name,

 uint32_t* answer

);

getdns_return_t getdns_dict_set_int

(

 getdns_dict_t this_dict,

 char const* name,

 uint32_t child_uint32

);

2.4 Provide Lengths of Mutable String Buffers

To avoid possible problems with buffer overruns, the API should supply lengths to all functions that
modify mutable character buffers. For example:

char* getdns_convert_dns_name_to_fqdn

(

 char* name,

 size_t len

);

char* getdns_convert_fqdn_to_dns_name

(

 char* name,

 size_t len

);

char* getdns_convert_ulabel_to_alabel

(

 char* label,

 size_t len

);

char* getdns_convert_alabel_to_ulabel

(

 char* label,

 size_t len

);

2.5 Additional String Manipulators

A second version of the string buffer manipulation functions listed above could be created with both
source and destination parameters, and a size parameter specifying the size of the destination buffer. If a
left-to-right source-to-destination convention is used:

getdns API Review 22-Jan-2014

 Page 5 of 9

char* getdns_convert_dns_name_to_fqdn_2

(

 char const* src_name,

 size_t src_len,

 char* dst_name,

 size_t dst_len

);

char* getdns_convert_fqdn_to_dns_name_2

(

 char const* src_name,

 size_t src_len,

 char* dst_name,

 size_t dst_len

);

char* getdns_convert_ulabel_to_alabel_2

(

 char const* src_ulabel,

 size_t src_len,

 char* dst_alabel,

 size_t dst_len

);

char* getdns_convert_alabel_to_ulabel_2

(

 char const* src_alabel,

 size_t src_len,

 char* dst_ulabel,

 size_t dst_len

);

Note that the size of the source array is provided in the examples above. While one could make an
argument against including this extra parameter, it does have the advantages of allowing for early
parameter validation and permitting the use of embedded substrings as source arguments.

2.6 Remove Unnecessary Header Dependencies

If no macro, type, variable, or function declaration or definition from <netinet/in.h> is referenced by
the getdns header, then <netinet/in.h> should not be included.

2.7 C++ Compilation Support

The header containing the C API should be modified with the usual conditional compilation directives in
order to support compilation with C++:

/* Created at 2013-04-02-16-59-04*/

#ifndef GETDNS_H

#define GETDNS_H

#include <stdint.h>

#include <stdlib.h>

#include <stdbool.h>

#ifdef __cplusplus

extern "C" {

#endif

getdns API Review 22-Jan-2014

 Page 6 of 9

/* BODY OF THE HEADER GOES HERE...

*/

#ifdef __cplusplus

}

#endif

#endif

3 API Refactoring
This section of the review is an attempt to refactor and improve the usability of the API. As such, the
comments and recommendations in this section assume that much larger changes in the API are possible.
They reflect my personal tastes as well as the principles I’ve employed over the years to build numerous
libraries, specifically:

 Provide an interface that concisely and elegantly expresses a coherent conceptual model.

 Promote understandability, readability, and mnemonic integrity.

 Eliminate or minimize opportunities for ambiguity and/or confusion.

 Eliminate or minimize annoying and/or repetitive work that must be performed by client code.

3.1 Names

Note: In the interest of brevity, I have left out the parameters from the function declarations listed in this
section. An ellipsis simply means a function’s parameters have been elided for purposes of discussion; it
does not indicate a variable-length parameter list.

3.1.1 Functions and Macros - General

The first opportunity for improvement I see lies in the naming conventions used by the API for function
and macro names. Because the C programming language has no concept of namespaces, it is a common
practice to use a unique prefix to disambiguate the function names and macro names that belong a given
library. In the case of the getdns API, functions are prefixed by "getdns_" and macros are prefixed by
"GETDNS_". To me, including the verb "get" as part of the prefix in the API's accessor functions violates
the DRY (don’t repeat yourself) principle. Consider, for example:

getdns_return_t getdns_list_get_list(...);

When building a C API that employs prefixes in this way, I try to make the prefixes to be as neutral as
possible – usually names, rarely adjectives or nouns, and never verbs. In the case of the getdns API, I
recommend removing the verb from the prefix by changing the function and macro name prefixes to
"vdns_" and "VDNS_", respectively, where the leading "v" or "V" derives from VPNC, e.g.:

typedef enum vdns_nametype_value

{

 VDNS_NAMETYPE_DNS = 800,

 ...

} vdns_nametype_t;

#define VDNS_NAMETYPE_DNS_TEXT Normal DNS (RFC 1035)

vdns_return_t vdns_list_get_length(...);

getdns API Review 22-Jan-2014

 Page 7 of 9

Another alternative is to change the function and macro name prefixes to "gdns_" and "GDNS_",
respectively, preserving some of the heritage of getdns. The remainder of this section uses the "v"/"V"
names for purposes of discussion.

3.1.2 Synchronous and Asynchronous Lookup Functions

The second opportunity to improve the getdns API naming conventions lies in the distinction between
the synchronous and asynchronous (event-driven) function names, and in the internal structure of those
names. The API appears to make the assumption that the default mode of programming will be
asynchronous, and disambiguates the synchronous version with the "_sync" suffix.

Most programmers using the API for the first time will probably assume that the unadorned function
names are the default mode, and also incorrectly assume that the default mode is a synchronous
programming model. This mismatch in expectations is a potential source of confusion.

I recommend that the suffix "_async" be added to all of the asynchronous functions, and that an
appropriate verb be added to the function names for both asynchronous and synchronous variants:

vdns_return_t vdns_get_general_async(...);

vdns_return_t vdns_get_address_async(...);

vdns_return_t vdns_get_hostname_async(...);

vdns_return_t vdns_get_service_async(...);

vdns_return_t vdns_cancel_callback(...);

vdns_return_t vdns_get_general_sync(...);

vdns_return_t vdns_get_address_sync(...);

vdns_return_t vdns_get_hostname_sync(...);

vdns_return_t vdns_get_service_sync(...);

In this way, the purpose and execution model of these key functions are clearly and unambiguously
documented in their names. In addition to improving clarity, this convention will ensure consistency with
the other function name changes that I recommend below.

3.1.3 Verb-Object Inversion

The final opportunity for improving naming convections lies in the way helper function names are
constructed. Almost all of the functions in the API have a name wherein an object type appears before the
relevant verb, for example:

getdns_return_t getdns_context_create(...);

void getdns_context_destroy(...);

In addition to changing the prefix, I recommend that the object and verb in these names be transposed:

vdns_return_t vdns_create_context(...);

void vdns_destroy_context(...);

In other words, the verb or command portion of the name appears immediately after the prefix, followed
by the object of that command.

I’ve also noticed that the names of some support functions in the API for manipulating list and dict
objects can be somewhat repetitious. For example, the two accessor functions

getdns_return_t getdns_list_get_list(...);

and

getdns_return_t getdns_dict_get_dict(...);

getdns API Review 22-Jan-2014

 Page 8 of 9

both seem a little awkward. In order to provide self-documentation of purpose and eliminate intra-name
repetition, I recommend that this entire set of functions be renamed as follows:

vdns_list_t vdns_create_list();

void vdns_destroy_list(...);

vdns_dict_t vdns_create_dict();

void vdns_destroy_dict(...);

vdns_return_t vdns_get_list_length(...);

vdns_return_t vdns_get_list_element_data_type(...);

vdns_return_t vdns_get_list_element_as_dict(...);

vdns_return_t vdns_get_list_element_as_list(...);

vdns_return_t vdns_get_list_element_as_bindata(...);

vdns_return_t vdns_get_list_element_as_int(...);

vdns_return_t vdns_get_dict_names(...);

vdns_return_t vdns_get_dict_data_type(...);

vdns_return_t vdns_get_dict_element_as_dict(...);

vdns_return_t vdns_get_dict_element_as_list(...);

vdns_return_t vdns_get_dict_element_as_bindata(...);

vdns_return_t vdns_get_dict_element_as_int(...);

vdns_return_t vdns_set_list_element_as_dict(...);

vdns_return_t vdns_set_list_element_as_list(...);

vdns_return_t vdns_set_list_element_as_bindata(...);

vdns_return_t vdns_set_list_element_as_int(...);

vdns_return_t vdns_set_dict_element_as_dict(...);

vdns_return_t vdns_set_dict_element_as_list(...);

vdns_return_t vdns_set_dict_element_as_bindata(...);

vdns_return_t vdns_set_dict_element_as_int(...);

With these changes, a function’s name clearly documents its operation (get or set), and whether it
operates upon an entire list/dict or upon a single element. To my mind, it also makes the function
name read in a more natural way.

A similar recommendation applies to those support functions that modify context attributes:

vdns_return_t vdns_set_context_update_callback(...);

vdns_return_t vdns_set_context_resolution_type(...);

vdns_return_t vdns_set_context_namespaces(...);

vdns_return_t vdns_set_context_dns_transport(...);

vdns_return_t vdns_set_context_limit_outstanding_queries(...);

vdns_return_t vdns_set_context_timeout(...);

vdns_return_t vdns_set_context_follow_redirects(...);

vdns_return_t vdns_set_context_dns_root_servers(...);

vdns_return_t vdns_set_context_append_name(...);

vdns_return_t vdns_set_context_suffix(...);

vdns_return_t vdns_set_context_dnssec_trust_anchors(...);

vdns_return_t vdns_set_context_dnssec_allowed_skew(...);

vdns_return_t vdns_set_context_stub_resolution(...);

vdns_return_t vdns_set_context_edns_maximum_udp_payload_size(...);

vdns_return_t vdns_set_context_edns_extended_rcode(...);

vdns_return_t vdns_set_context_edns_version(...);

vdns_return_t vdns_set_context_edns_do_bit(...);

getdns API Review 22-Jan-2014

 Page 9 of 9

vdns_return_t vdns_set_context_memory_allocator(...);

vdns_return_t vdns_set_context_memory_deallocator(...);

vdns_return_t vdns_set_context_memory_reallocator(...);

3.2 Modifying bindata Elements of list or dict Objects

The functions for modifying bindata elements of a list or dict require the client code to supply a
fully-formed bindata parameter:

vdns_return_t

vdns_set_list_element_as_bindata

(

 vdns_list_t this_list,

 size_t index,

 vdns_bindata_t child_bindata

);

vdns_return_t

vdns_set_dict_element_as_bindata

(

 vdns_dict_t this_dict,

 char const* name,

 vdns_bindata_t child_bindata

);

While this is clearly useful if one desires to copy the contents of one bindata element into another, it
also makes the ad hoc modification of a list or dict element a little more awkward than it needs to be.
I recommend that a second variant of each of these functions be added so that the size and content of the
bindata may be set directly:

vdns_return_t

vdns_set_list_element_as_bindata_2

(

 vdns_list_t this_list,

 size_t index,

 uint8_t* bindata_content,

 size_t bindata_size

);

vdns_return_t

vdns_set_dict_element_as_bindata_2

(

 vdns_dict_t this_dict,

 char const* name,

 uint8_t* bindata_content,

 size_t bindata_size

);

3.3 Platform Independence

The API must ensure that no assumptions are made, nor are any constructs used, that may restrict its
platform independence. This comment is more reminder than substantive at this point.

